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Abstract. If new physics is found at the LHC (and the ILC) the reconstruction of the underlying theory
should not be biased by assumptions about high-scale models. For the mapping of many measurements onto
high-dimensional parameter spaces we introduce SFitter with its new weighted Markov chain technique.
SFitter constructs an exclusive likelihood map, determines the best-fitting parameter point and produces
a ranked list of the most likely parameter points. Using the example of the TeV-scale supersymmetric La-
grangian we show how a high-dimensional likelihood map will generally include degeneracies and strong
correlations. SFitter allows us to study such model-parameter spaces employing Bayesian as well as frequen-
tist constructions. We illustrate in detail how it should be possible to analyze high-dimensional new-physics
parameter spaces like the TeV-scale MSSM at the LHC. A combination of LHC and ILC measurements
might well be able to completely cover highly complex TeV-scale parameter spaces.

1 New physics at the TeV scale

In the coming years, the major effort in high-energy
physics will be the search for a Higgs boson or an alterna-
tive to such a fundamental Higgs scalar at the LHC. How-
ever, fundamental scalars are difficult to accommodate
in field theory – their masses are quadratically divergent
with the cutoff scale of the theory. This problem natu-
rally leads to speculations about the necessary ultraviolet
completion of the standard model, which should remove
such quadratic divergences and allow us to extrapolate our
understanding to maybe even the Planck scale. Such an
ultraviolet completion can (and should) at the same time
solve the second big mystery of high-energy physics, the
existence of cold dark matter.
An overwhelming amount of data on possible ultravio-

let completions of the standard model have been amassed
over the past decades, consistently confirming the stan-
dard model. LEP and Tevatron have put stringent bounds
on the masses of new particles, cutting into the preferred
region for example for supersymmetric dark matter [1–5]
not only via the derived light Higgs mass, but also via dir-
ect searches [6–8]. The anomalous magnetic moment of
the muon may or may not seriously threaten the standard
model, but it will certainly disfavormany possible interpre-
tations of LHC signatures [9, 10]. Flavor physics lead to the
postulation of additional symmetries in ultraviolet comple-
tions, an example being supersymmetry [11–14]. And, last
but not least, the measured relic density of the dark matter
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agent puts very stringent constraints not only on the mass
and coupling of such a candidate, but also on other par-
ticles involved in the annihilation process or in its (direct or
indirect) detection [3–5].
Many new-physics scenarios do not simply predict

a new narrow resonance, such as for example a Z ′. In-
stead, a wealth of measurements at the LHC, and later on
at the ILC and other experiments might be available, and
with it the need to be combined properly. The situation
could be similar to current fits of electroweak precision
data, but most likely it will be much more complex. The
LHC era with all its experiments can give a great many
hints about new-physics scenarios, it will certainly rule
out large classes of extensions of the standard model –
but it will definitely not give a one-to-one map between
a limited number of observables and a well-defined small
set of model parameters.
Bayesian probability distributions and frequentist pro-

file likelihoods are two ways to study an imperfectly
measured parameter space, where some model parameters
might be very well determined, others heavily correlated,
and still other ones even basically unconstrained. This situ-
ation is different for example from B physics, where theor-
etical degeneracies and symmetries have become a major
challenge [15–18]. A careful comparison of the benefits and
traps of the frequentist and the Bayesian approaches in the
light of new-physics searches is therefore necessary. SFitter
follows both paths.
If heavy strongly interacting particles can be pro-

duced at the LHC, they will decay into lighter weakly
interacting particles and finally into the dark matter
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candidate [19–26], with decay cascades longer than the
top-quark decay chain. These cascade measurements not
only carry information on the masses of the particles in-
volved. The angular correlations also reflect the spins of
the particles in the cascade and allow for tests for example
of the SUSY hypothesis against an extra-dimensional hy-
pothesis [27–33]. At the ILC, detailed analyses of kine-
matically accessible particles will be possible, for example
using threshold scans [34, 35]. Masses, branching ratios
as well as measurements of particle spins will shed addi-
tional light on the underlying theory. Currently, no at-
tempt is made to measure discrete quantum numbers of
new-physics particles using SFitter. Instead the analysis is
limited to the continuous space of the parameters.
In this paper the analysis will be restricted to the pa-

rameter point SPS1a [36], only because it has been studied
in detail by the experimental communities at the LHC and
ILC. After briefly reviewing the experimental results and
the treatment of the experimental and theoretical errors
in SFitter, the relevant features of these measurements as
well as the approach of SFitter (for earlier versions of SFit-
ter, see [37, 38]) will be illustrated in the MSUGRA model,
before moving on to the weak-scale MSSM.
The organization of the MSUGRA and the MSSM sec-

tions follows the general logic of SFitter: first, a fully exclu-
sive log-likelihood map of the respective parameter space
is constructed and a ranked list of the best-fitting points is
produced. We will see that already for the MSUGRA pa-
rameter space the LHC measurements will lead to strong
correlations and alternative likelihood maxima. The situ-
ation will become more complex in the case of the MSSM,
where equally good alternative best-fitting points are in-
ducedby the structure of thegaugino–higgsinomassparam-
eters, the sign of the higgsino mass parameter, and the cor-
relations between the trilinear coupling in the top sector and
the top-quarkmass. This degeneracy would have to be bro-
ken by additional measurements, at the LHC or elsewhere.
Starting from the log-likelihood map we then use

frequentist and Bayesian constructions to study lower-
dimensional probability distributions including correlation
effects. Again, this analysis illustrates the complex struc-
ture of the MSSM parameter space as well as the features
of the statistics methods employed. Finally, the weak-scale
MSSM Lagrangian is reconstructed with proper experi-
mental and theory-error distributions. This weak-scale
result should serve as a starting point to probe supersym-
metry breaking bottom–up without theoretical bias. In
the appendices we discuss the techniques of SFitter using
a simple toy model.
The approach of mapping measurements onto a high-

dimensional parameter space as well as the SFitter tool
are completely general1: model parameters as well as meas-
urements are included in the form of model files and can
simply be replaced. SFitter serves as a general tool to map
typically up to 20-dimensional highly complex parameter
spaces onto a large sample of highly correlated measure-
ments of different quality.

1 Fittino [39, 40] follows a very similar logic to SFitter, includ-
ing a scan of the high-dimensional MSSM parameter space.

2 Collider data

The analysis in this paper critically depends on detailed
experimental simulations of measurements and errors at
the LHC and at the ILC. Therefore the well-understood
parameter point SPS1a [36] is used. This point has a fa-
vorable phenomenology for both LHC and ILC. The ori-
ginal version SPS1a instead of the dark matter corrected
SPA1/SPS1a’ point is used, since cosmological measure-
ments like the relic density are not part of this work [41].

2.1 LHC and ILC measurements

The parameter point SPS1a is characterized bymoderately
heavy squarks and gluinos, which leads to long cascades in-
cluding the neutralinos and sleptons. Gauginos are lighter
than higgsinos, and the mass of the lightest Higgs boson is
close to the mass limit determined at LEP. The summary
of particle mass measurements is listed in Table 1, taken
from [42]. The central values are calculated by SuSpect [43].
Ingeneral,wesee fromthetable that theLHChas theadvan-
tage of a better coverage of the strongly interacting sparticle
sector, whereas a somewhat better coverage and precision
in particular in the gaugino sector can be obtained with the
ILC [44–46]. It should be noted that the quoted LHC mass
measurements are obtained frommeasurements of kinemat-
ical endpoints and mass differences [42], using the observ-
ables shown in Table 2.The systematic error quoted in these
measurements is essentially due to the uncertainty in the
lepton and jet energy scales, expected to be 0.1% and 1%,
respectively, at the LHC. These energy-scale errors are each
taken to be 99% correlated as discussed in [42].
Precision mass measurements at the LHC are not pos-

sible from the measurement of production rates of certain
final states, i.e. combinations of (σ ·BR). The reason is the
sizeable QCD uncertainties on the cross section [47], often
largely due to gluon radiation from the initial state, but by
no means restricted to this one aspect of higher-order cor-
rections.Generic errors on the cross section alone, of at least
20%, plus errors due to detector efficiencies and coverage
imply that one would only rely on (σ ·BR)-type informa-
tion intheabsenceofotherusefulmeasurements [48, 49].For
such cases, the next-to-leading order production rates for
strongly interacting sparticles (based onProspino2 [50–53])
are implemented in SFitter and can be readily included in
theanalysis.The same is true for thebranching ratios,where
interfaces toMSMlib [54] andSdecay/S-HIT [55, 56] are im-
plemented. The QCD corrections to measurements of the
decay kinematics are known to be under control: additional
jet radiation is well described by shower Monte Carlos [57]
andwillnot leadtounexpectedQCDeffects.Off-shell effects
in cascade decays can of course be large once particles be-
come almost mass degenerate [58, 59], but in the standard
SPS1a cascades these effects are expected to be small.
For the ILC, as a rule of thumb if particles are light

enough to be produced in pairs given the center-of-mass en-
ergy of the collider, their mass can be determined with im-
pressive accuracy.Themass determination is possible either
through direct reconstruction or through a measurement
of the cross section at production threshold with compara-
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Table 1. Errors for the mass determination in SPS1a, taken from [42]. Shown are the
nominal parameter values (from SuSpect), the error for the LHC alone, from the LC
alone, and from a combined LHC+LC analysis. Empty boxes indicate that the particle
cannot, to current knowledge, be observed or is too heavy to be produced. All values
are given in GeV

mSPS1a LHC ILC LHC+ILC mSPS1a LHC ILC LHC+ILC

h 108.99 0.25 0.05 0.05 H 393.69 1.5 1.5
A 393.26 1.5 1.5 H+ 401.88 1.5 1.5

χ01 97.21 4.8 0.05 0.05 χ02 180.50 4.7 1.2 0.08

χ03 356.01 4.0 4.0 χ04 375.59 5.1 4.0 2.3

χ±1 179.85 0.55 0.55 χ±2 375.72 3.0 3.0

g̃ 607.81 8.0 6.5

t̃1 399.10 2.0 2.0

b̃1 518.87 7.5 5.7 b̃2 544.85 7.9 6.2

q̃L 562.98 8.7 4.9 q̃R 543.82 9.5 8.0

ẽL 199.66 5.0 0.2 0.2 ẽR 142.65 4.8 0.05 0.05
µ̃L 199.66 5.0 0.5 0.5 µ̃R 142.65 4.8 0.2 0.2
τ̃1 133.35 6.5 0.3 0.3 τ̃2 203.69 1.1 1.1
ν̃e 183.79 1.2 1.2

Table 2. LHCmeasurements in SPS1a, taken from [42]. Shown are the nominal values
(from SuSpect) and statistical errors, systematic errors from the lepton (LES) and jet
energy scale (JES) and theoretical errors. All values are given in GeV

type of measurement nominal stat. LES JES theo.
value error

mh 108.99 0.01 0.25 2.0
mt 171.40 0.01 1.0
m
l̃L
−mχ01

102.45 2.3 0.1 2.2

mg̃−mχ01 511.57 2.3 6.0 18.3

mq̃R −mχ01 446.62 10.0 4.3 16.3

mg̃−mb̃1 88.94 1.5 1.0 24.0

mg̃−mb̃2 62.96 2.5 0.7 24.5

mmaxll : three-particle edge (χ
0
2,l̃R,χ

0
1) 80.94 0.042 0.08 2.4

mmaxllq : three-particle edge (q̃L,χ
0
2,χ
0
1) 449.32 1.4 4.3 15.2

mlowlq : three-particle edge (q̃L,χ
0
2,l̃R) 326.72 1.3 3.0 13.2

mmaxll (χ
0
4): three-particle edge (χ

0
4,l̃R,χ

0
1) 254.29 3.3 0.3 4.1

mmaxττ : three-particle edge (χ
0
2,τ̃1,χ

0
1) 83.27 5.0 0.8 2.1

m
high
lq : four-particle edge (q̃L,χ

0
2,l̃R,χ

0
1) 390.28 1.4 3.8 13.9

mthresllq : threshold (q̃L,χ
0
2,l̃R,χ

0
1) 216.22 2.3 2.0 8.7

mthresllb : threshold (b̃1,χ
0
2,l̃R,χ

0
1) 198.63 5.1 1.8 8.0

ble accuracy but different systematics. Precision measure-
ments of the branching ratios, e.g. of the Higgs boson, are
possible. Additionally discrete quantum numbers like the
spin of the particles can be determined similarly well.

2.2 Error determination

In order to obtain reliable error estimates for the funda-
mental parameters, a proper treatment of experimental
and theory errors depending on their origin is mandatory.

The CKMfitter prescription [15, 16] is largely followed. The
complete set of errors in the MSUGRA as well as in the
MSSM analysis includes statistical experimental errors,
systematic experimental errors, and theory errors. The sta-
tistical experimental errors are treated as uncorrelated in
the measured observables. In contrast, the systematic ex-
perimental errors for example from the jet and lepton en-
ergy scales [42] are fully correlated. Hence, both are non-
trivially correlated in the masses determined from the end-
points. Theory errors are propagated from the masses to
the measurements.
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As there is no reason why unknown higher-order cor-
rections should be centered around a given value or even
around zero, the theory error of the weak-scale masses is
not taken to be Gaussian but flat box-shaped: the proba-
bility assigned to any measurement does not depend on its
actual value, as long as it is within the interval covered by
the theory error. A tail could be attached to these theory-
error distributions, but higher-order corrections are pre-
cisely not expected to become arbitrarily large. Confronted
with a perturbatively unstable observable one would in-
stead have to rethink the perturbative description of the
underlying theory.
Taking this interval approach seriously impacts not

only the distribution of the theory error, but also its combi-
nation with the combined (Gaussian) experimental error.
A simple convolution of a box-shaped theory error with
a Gaussian experimental error leads to the difference of two
one-sided error functions. Numerically, this function will
have a maximum, so the convolution still knows about the
central value of theoretical prediction. On the other hand,
the function is never flat and differentiable to arbitrarily
high orders at all points.
A better solution is a distribution that is flat as long as

the measured value is within the theoretically acceptable
interval and outside this interval drops off like a Gaus-
sian with the width of the experimental error. The log-
likelihood χ2 =−2 logL given a set of measurements d and
in the presence of a general correlation matrix C reads

χ2 = χd
TC−1χd ,

χd,i =

⎧
⎨

⎩

0 |di− d̄i|< σ
(theo)
i ,

|di−d̄i|−σ
(theo)
i

σ
(exp)
i

|di− d̄i|> σ
(theo)
i ,

(1)

where d̄i is the ith data point predicted by the model pa-
rameters and di the actual measurement. This definition
corresponds to the RFit scheme described in [15, 16]. The
experimental errors are considered to be Gaussian, so they
are summed quadratically. The statistical error is assumed
to be uncorrelated between different measurements. The
first systematic error σ(�) originates from the lepton energy
scale and is taken as 99% correlated between two meas-
urements. Correspondingly, σ(j) stems from the jet energy
scale and is also 99% correlated. The correlations are ab-
sorbed into the correlation matrix C

Ci,i = 1 ,

Ci,j = Cj,i =
0.99σ

(�)
i σ

(�)
j +0.99σ

(j)
i σ

(j)
j

σ
(exp)
i σ

(exp)
j

. (2)

While box-shaped error distributions for observables
are conceptually no problem, they lead to a technical com-
plication with hill-climbing algorithms. All functions used
to describe such a box-shaped distribution will have a dis-
continuity of higher derivatives in at least one point. The
prescription above has a step in the second derivative at
d̄±σ(theo), which leads to a problem for example with Mi-
nuit’s Migrad algorithm. Details on this problem are given
in the appendix.

A second complication with flat distributions is that in
the central region the log-likelihood is a constant as a func-
tion of some model parameters. In those regions these pa-
rameters vanish from the counting of degrees of freedom.
For all results shown in this paper flat theory errors are
assumed, unless stated otherwise. Results with different
theory errors are discussed in Sect. 2.2.
To determine the errors on the fundamental parameters

two techniques are used: a direct determination for the best
fit using Minuit and a statistical approach using sets of toy
measurements. The advantage of Minuit is that only one fit
is necessary to determine the errors. For the non-Gaussian
error definition used above only Minos (of Minuit) can be
used, as it determines the intervals χ2±1 without assum-
ing Gaussian errors. However, there is a complication be-
cause of the flat region. Its algorithm computes the second
derivative of the log-likelihood for example in its conver-
gence criterion. This second derivative has two steps pre-
cisely in the region where one would expect the algorithm
to converge. Therefore the Minos algorithm may not per-
form well with flat error distributions in the log-likelihood.
SFitter provides the option to smear the input meas-

urement sets according to their errors, taking into ac-
count the error form (flat or Gaussian) and the correla-
tions e.g. of the systematic energy-scale errors. For each of
the smeared toy-measurement sets SFitter determines the
best-fit value. The width of the distribution of the best-
fit values of a parameter gives the error on this parameter.
This option is time consuming (many fits are needed), but
necessary to be able to obtain the correct confidence level
intervals. Hence, this is the method used to determine the
parameter errors whenever flat theory errors are assumed.
For other cases this smearing technique can be used as
a cross-check.

3 MSUGRA

No model for supersymmetry breaking should be assumed
for analyses. Instead, the breaking mechanism should be
inferred from the data.
However, the supersymmetric parameter space can be

simplified by unification assumptions, leading to an easily
solvable problem. A simple Minuit fit is sufficient to deter-
mine the MSUGRA [60–65] parameters m0,m1/2, A0 and
tanβ from the mass or endpoint measurements at the LHC
and/or ILC. The correct sign of µ is determined by the
quality of the fit which is worse for the hypothesis with the
wrong sign. Such a fit can be an uncorrelated Gaussian χ2

fit or it can include all correlations and correlated errors,
and none of the errors have to be assumed to be Gaussian.
Using SFitter a log-likelihood fit is performed, extracting
the best-fitting point in the respective MSUGRA (or later
MSSM) parameter space and determining the errors in-
cluding all correlations.
Because of the sizeable error on the top mass (LHC tar-

get: 1 GeV; ILC target: 0.12GeV), the top mass or Yukawa
must be included in any SUSY fit [66–69]. In a way,
the running top Yukawa is defined at the high scale as
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one of the MSUGRA model parameters, which through
coupled renormalization group running predicts all low-
scale masses, including the top-quark mass, all supersym-
metric partner masses, and the light Higgs mass [70–72].
In principle, this approach should be taken for all standard
model parameters, couplings and masses [66–69], but at
least for moderate values of tanβ for example the bottom
Yukawa coupling has negligible impact on the extraction of
supersymmetric parameters.
The first question to be discussed in the simplified

MSUGRA context is whether it is possible to unambigu-
ously identify the correct parameters from a set of observ-
ables and their errors. In other words, which parameter
point has the largest likelihood value p(d|m), evaluated as
a function over the model-parameter space m for a given
data set d. Note that discrete model assumptions (like
MSUGRA versus extra dimensions) are not included. In-
stead, one model with a multi-dimensional vector of con-
tinuous parameters is scanned. The question immediately
arises if there are secondary maxima in the likelihood map
of the parameter space.
In a one-dimensional problem the probability distribu-

tion function (pdf) p(d|m) for an observabled given a vector
ofmodel parametersm canbeused to compare twohypothe-
ses for a given data set: decide which of the two hypotheses
mj with their central values d

∗
j is preferred and compute the

integral over the ‘wrong’pdfp(d|mwrong) fromd∗right to infin-
ity. This integral gives the confidence level of the decision in
favor of one of the two hypotheses. Note that this extraction
applies to discrete and to continuous parameter determin-
ation, but it requires that we start from a mathematically
properly defined pdf in the observable space.
For the procedure described above the Neyman–Pear-

son lemma states that if the correct hypothesis is picked as
‘right’, a likelihood-ratio estimator will produce the small-
est possible type-II error, i.e. the smallest error caused by
mistaking a fluctuation of ‘wrong’ for ‘right’. A likelihood
ratio can be extracted from simulations [73, 74], or from
data combined with simulations [75] or from data alone [15,
16]. To test well-defined hypotheses using powerful data,
including for example the top-mass measurement, likeli-
hood methods can yield impressive results. Such a likeli-
hood method can easily be generalized to high-dimensional
observable spaces or model-parameter vectors, as long as
it is applied to properly defined probability distributions.
The crucial and highly controversial question is how to pro-
duce a pdf when the parameter space is high-dimensional
and poorly constrained dimensions of it are ignored.
SFitter provides the relevant frequentist or Bayesian re-

sults in three steps: first

(1) SFitter computes a log-likelihood map of the entire
parameter space. This map is completely exclusive,
i.e. it includes all dimensions in the parameter space.

(2) Then, SFitter ranks the best local likelihood maxima
in the map according to their log-likelihood values. It
identifies the global maximum, and a bias towards sec-
ondary maxima (e.g. SUSY breaking scenario) can be
included, without mistaking such a prior for actual
likelihood.

(3) Finally, SFitter computes profile-likelihood or Baye-
sian probability maps of lower dimensionality, down
to one-dimensional distributions, by properly remov-
ing or marginalizing unwanted parameter dimensions.
Only in this final step frequentist and Bayesian ap-
proaches need to be distinguished.

The three steps are illustrated in the appendix for a simple
toy model.

3.1 Likelihood analysis

Looking for example at the parameter point SPS1a at the
LHC, different parameters are heavily correlated, some pa-
rameters are only poorly constrained, and distinct differ-
ent maxima in L ∼ χ2 can differ by O(N), where N is
the number of observables. Therefore, one would like to
produce probability distributions or likelihoods over sub-
spaces of the model-parameter space from the fully exclu-
sive likelihood map. In other words, unwanted dimensions
of the parameter space are eliminated until only one- or
two-dimensional ‘likelihoods’ remain. The likelihood can-
not just be integrated unless a measure is defined in the
model space. This measure automatically introduces a bias
and leads to a Bayesian pdf.
Instead, in this section a profile likelihood is used: for

each (binned) parameter point in the (n−1)-dimensional
space we explore the nth direction, which is to be removed,
L(x1,... ,n−1, xn). The best value of Lmax(n) is picked along
this direction and its function value is identified with
the lower-dimensional parameter point L(x1,... ,n−1) ≡
Lmax(n)(x1,... ,n−1, xn). Using this kind of projection most
notably guarantees that the best-fit points always survives
to the final representation, unless two of them belong to the
same bin in the reduced parameter space.
For the MSUGRA case the likelihood map is com-

puted over the entire parameter space given a smeared
LHC data set. This map covers the model parameters
m0,m1/2, A0, B,mt, where B is later traded for the weak-
scale tanβ, as described in Sect. 3.3. Usually tanβ will be
shown, because this parameter has a more obvious inter-
pretation in the weak-scale theory.
The SFitter result is shown in Fig. 1: a completely ex-

clusive map over the five-dimensional parameter space is
the starting point. Combining 30 Markov chains 600000
model-parameter points are collected. For the renormaliza-
tion group running SoftSUSY [76] is used with an efficiency
of 25 · · ·30%, which corresponds to a few hours of CPU
time for each of the 30 chains. Because the resolution of
theMarkov chain is not sufficient to resolve each local max-
imum in the log-likelihood map, an additional maximiza-
tion algorithm (Minuit’s Migrad) starts at the best points
of the Markov chains to identify the local maxima.
In Fig. 1 the best-fit points in the MSUGRA parame-

ter space are shown, as obtained from the five-dimensional
likelihood map. For the SPS1a parameter point a general
pattern of four distinct maxima emerges in the likelihood:
first, the trilinear coupling can assume the correct value of
around −100GeV, but it can also become large and posi-
tive ∼ 700GeV. This degeneracy is correlated with a slight
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Fig. 1. SFitter output for
MSUGRA in SPS1a. Upper
left : list of the best log-likeli-
hood values over the
MSUGRA parameter space.
Upper right: two-dimensional
profile likelihood χ2 over the
m0−m1/2 plane. Lower : one-
dimensional profile likelihoods
1/χ2 for m0 and m1/2. All
masses are given in GeV

shift in the top mass, which means it will be much less pro-
nounced if the top-quark mass is not part of the MSUGRA
parameters set. This correlation occurs through the light
Higgs mass and its strength largely depends on the the-
ory error assumed for the Higgs mass. Secondly, a simi-
lar feature is present for each sign of µ, correlated with
a slight shift in tanβ, which compensate each other in the
neutralino–chargino sector. Such a degeneracy is expected,
because at the LHC only one of the two heavy neutralinos
are observed. Including the precise and more complete ILC
measurements this degeneracy should vanish.
An example correlation between two model parame-

ters is the profile likelihood in the m0–m1/2 plane, after
projecting away the A0, B, sign(µ) and mt directions.
The likelihood maximum starts from the true values
m0 = 100GeV andm1/2 = 250GeV and continues into two
branches. These branches reflect the fact that extract-
ing masses from kinematic endpoints involves quadratic
equations. Ignoring such correlations between parameters
the two-dimensional profile likelihood is projected onto
each of the two remaining directions. Both distributions
show sharp maxima of the profile likelihoods in the correct
places, because the resolution is not sufficient to resolve
the four distinct solutions for A0 and sign(µ). Note that
all these profile likelihood distributions are mathematically
not probability distributions, because projecting on a pa-
rameter subspace does not protect the normalization of the
original likelihood map (which can be viewed as a probabil-
ity distribution).
Thus eliminating a dimension in the parameter space

means loss of information. Therefore, it is not obvious that
producing low-dimensional distributions from the com-
pletely exclusive likelihood map is always sensible. An ex-
ample is the correlation of mt and A0 – as mentioned be-
fore a strong correlation from the Higgs mass measurement
is expected. Figure 2 shows the two-dimensional and one-
dimensional profile likelihoods in the mt–A0 subspace. In

the two columns the two signs of µ are separated; from
the list of maxima the best-fit points are expected to be
roughly 1 GeV higher inmt and 30–80 GeV higher inA0 for
µ > 0.
Locally, the two-dimensional profile likelihoods around

the maxima show little correlation between mt and A0.
The correct value around A0 =−100GeV is preferred, but
the alternative solution aroundA0 = 900GeV is clearly vis-
ible. On top of this double-maximum structure for both
signs of µ there is a parabola-shaped correlation between
the mt and A0. The apex of the parabola is roughly 5 GeV
above the best fits in mt. This correlation becomes invisi-
ble once one of the two parameter directions are projected
away and the one-dimensional profile likelihoods are ana-
lyzed. The two alternative solutions do not appear in the
mt histogram, because the alternative maximum is rela-
tively unlikely and because the two best-fit values for mt
differ by a mere GeV. The same is true for A0 where only
a tiny tail towards the wrong solution can be seen.
Since only one measurement smeared according to the

Gaussian experimental errors is used for the parameter ex-
traction shown in Fig. 1, the correct values do not have to
coincide with the best log-likelihood among the local max-
ima. As a matter of fact, just changing the theory errors
from the correct flat to a possibly approximate Gaussian
shape can have an effect on the ranking of maxima: for
Gaussian theory errors the χ2 values of 4.35, 26.1, 10.5,
22.6 appear in the order shown in Fig. 1. In other words,
just smearing the measurements can indeed shift the or-
dering of the best local maxima, supporting our claim that
a careful look at more than just the best solution might
make sense in a parameter space as complex as MSUGRA.
Even if such inversions arise, the parameter determin-

ation can be repeated with different (smeared) sets of ob-
servables. The frequency with which the wrong parameter
set corresponds to the lowest χ2 value is a measure how
seriously degenerate the alternative maxima are.
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Fig. 2. SFitter output for A0 and yt. The two columns of one- and two-dimensional profile likelihoods correspond to µ < 0 (left)
and µ > 0 (right). A χ2 map is shown in the first row and 1/χ2 distributions in the second and third

3.2 Bayesian approach

A likelihood analysis as presented in the last section is un-
fortunately not designed to produce probability distribu-
tions for model parameters. This means it will not answer
questions of the kind: in the light of electroweak preci-
sion constraints and dark matter constraints, what sign
of µ is preferred in MSUGRA [77]? Note that this is not
the same question as: what is the relative difference in
the likelihood for the two best points on each side of µ.
To answer the first question the likelihood over each of
the two halves of the parameter space needs to be inte-
grated over. All parameter dimensions except for µ must
be integrated over to compute the pdf for µ given the
data. For such an integration leading to lower-dimensional
probability distributions a measure has to be introduced,
the (Bayesian) prior. This prior has its advantages, but

it can also lead to unexpected effects, as shown in the
following [66–69].
One might argue that such questions are irrelevant be-

cause the goal is to find the correct, i.e. the most likely
parameter point. On the other hand, asking for a reduced-
dimensionality probability density could well be a very
typical situation in the LHC era. What kind of linear col-
lider should be built given LHC data? What is the most
likely mechanism for dark matter annihilation? How to de-
tect dark matter? Questions like these deserve well-defined
answers.
As discussed before, shifting from a frequentist to

a Bayesian approach does not affect the main part of
the SFitter program. Or in other words, SFitter produces
Bayesian probability distributions or profile likelihoods
without any preference. While not strictly necessary in
a Bayesian analysis, the top-likelihood points from Fig. 1
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Fig. 3. SFitter output for
MSUGRA in SPS1a. Upper
left : list of the largest log-
likelihood values over the
MSUGRA parameter space.
Upper right: two-dimensional
Bayesian pdf χ2 over the m0–
m1/2 plane marginalized over
all other parameters. Lower :
one-dimensional Bayesian pdfs
1/χ2 for m0 and m1/2. All
masses are given in GeV

also appear in the Bayesian results shown in Fig. 3. The
second panel in Fig. 3 now shows a two-dimensional repre-
sentation of the Bayesian pdf over the MSUGRA param-
eter space. All parameter dimensions except for m0 and
m1/2 are marginalized using flat priors. The only slight
complication arises from the treatment ofB or tanβ, as de-
scribed in Sect. 3.3. Unless explicitly stated otherwise the
prior is flat in the high-scale mass parameter B. The re-
sults are typically shown in terms of tanβ, because this
parameter is easier to interpret at the weak scale.
In the two-dimensional pdf shown in Fig. 3 the same

two-branch structure appears as for the profile likelihood.
However, there are two differences: first, the area around
the true parameter point is less pronounced in the Bayesian
pdf, compared to the profile likelihood. In the integration
over a direction in parameter space noise gets collected
from regions with a finite but insignificant likelihood. This
noise washes out the peaked structures, while the pro-
file likelihood by construction keeps mainly these best-fit
structures. This effect also considerably smears the one-
dimensional Bayesian pdf distributions inm0 andm1/2.
Secondly, the branch structure is more pronounced

in Fig. 3. While in the profile likelihood the area between
the two branches is filled by single good parameter points
in the parameters projected away, the Bayesian marginal-
ization provides ‘typical’ likelihood values in this region,
which in general does not fit the data as well.
Again in complete analogy to the likelihood analy-

sis the study of the correlation of mt and A0 serves as
an example of how marginalizing parameters can weaken
the understanding of the parameter space, independent
of the frequentist or Bayesian approach. Figure 4 shows
the Bayesian pdfs for mt and A0. Because of the strongly
peaked likelihood map in them0 andm1/2 directions a full
marginalization is not applied in these directions. Instead,
the mass parameters m0 and m1/2 are marginalized only

in a frame ±2 GeV and tanβ is varied by ±1.5, always
around the best-fit point for each sign of µ. This addi-
tional constraint or bias can be useful when producing
a marginalized Bayesian pdf for comparably poorly meas-
ured parameters. In order not to be mislead it is necessary
to explicitly check that the partly marginalized parameters
m0,m1/2, tanβ are not significantly correlated with the re-
mainingmt and A0.
Inmt the Bayesian pdf is not symmetric with respect to

the central values for each sign of µ. This asymmetry of the
tails arises from the parabola shape of the mt–A0 correla-
tion. The large-likelihood region around the apex becomes
more important than the far-away arms of the parabola
after marginalizing A0. This is a typical volume effect in
Bayesian statistics. At first sight these asymmetric tails of
theBayesianpdf formt seem to disagreewith its profile like-
lihood, but it is a physics effect, i.e. a correlation marginal-
ized away. This result is useful when it comes to trying to
resolve such a correlation, but by nomeans problematic.
Comparing the profile likelihood and the Bayesian pdf

for A0 the volume effects significantly enhance the relative
weight of the secondary maximum atA0 ∼ 800GeV. More-
over, comparing the likelihood scales for µ < 0 and (the
correct) µ > 0, the relative enhancement of the Bayesian
pdf is almost an order of magnitude, while the binned best-
fit points differ by only a factor 5 for the profile likelihood.

3.3 Purely high-scale model

Strictly speaking, the usual set of MSUGRAmodel param-
eters contain the high-scale mass parametersm0,m1/2, A0,
and on the other hand contain the weak-scale ratio of vac-
uum expectation values tanβ = v2/v1, which explicitly as-
sumes radiative electroweak symmetry breaking. Minimiz-
ing the potential in the directions of both vevs gives the two
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Fig. 4. SFitter output for A0 and yt. The two columns of marginalized Bayesian pdfs correspond to µ < 0 (left) and µ> 0 (right).
For illustration purposes the parameters m0 and m1/2 are only marginalized around their best-fit values. We show a χ

2 map in

the first row and 1/χ2 distributions in the second and third

conditions [78]:

µ2 =
m2H,2 sin

2 β−m2H,1 cos
2 β

cos 2β
−
1

2
m2Z ,

2Bµ= tan 2β
(
m2H,1−m

2
H,2

)
+m2Z sin 2β . (3)

The masses mH,j correspond to the two Higgs doublets in
the type-II two-Higgs doublet model of the MSSM.H1 has
a tree-level coupling only to down-type fermions, while H2
couples to up-type fermions only. The mass-squared pa-
rameter Bµ appears in front of mixed terms of the kind
H01H

0
2 . Assuming electroweak symmetry breaking usually

mH,j and tanβ are used to compute the mass parameters
B and µ, assuming the well-measured standard model pa-
rameter mZ . In MSUGRA the two scalar Higgs masses at

the high scale are given bym0, so in fact onlym0 and tanβ
are used.
A well-motivated alternative is to replace tanβ with B

as a high-scale input parameter together withm0 and com-
pute tanβ and µ (modulo its sign) assuming electroweak
symmetry breaking and the Z mass. This approach has the
advantage that all input parameters are high-scale mass
parameters. This does not make a difference for a frequen-
tist profile-likelihoodmap, but in a Bayesian approach tak-
ing into account volume effects it does.
To illustrate the effects of flat priors either in B or

in tanβ the Bayesian pdfs and the profile likelihoods are
shown in the m0–tanβ plane and the one-dimensional
tanβ distributions in Fig. 5. From the best-fit points
in Fig. 1 even after including theory errors the correct value
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Fig. 5. SFitter output for
tan β. The first row shows
Bayesian pdfs with a flat
prior in B, the second row
Bayesian pdfs with a flat prior
in tan β, and the last row pro-
file likelihoods

for tanβ can be determined from the set of LHC meas-
urements. However, the first row of plots in Fig. 5 clearly
shows that with a flat prior in B the one-dimensional
Bayesian pdf is largely dominated by noise and by a bias
towards as small as possible tanβ. This bias is simply
an effect of the flat prior in B. Switching to a flat prior
in tanβ, noise effects are still dominant, but the max-
imum of the one-dimensional Bayesian pdf is in the correct
place. As expected, the profile likelihood picks the cor-
rect central value of tanβ ∼ 12 for the smeared parameter
point.

3.4 Errors on parameters

Once a best-fit point has been determined from any set
of measurements, the question arises what the precision of
the determination of the parameters is. First the case for
LHC measurements is studied and then the impact of the
ILC is evaluated.

3.4.1 LHC: masses versus kinematic endpoints

To determine the central values and the errors on the fun-
damental parameters two different approaches are avail-
able for the LHC measurements. Either the kinematical
endpoints or the particle masses (from a fit to the end-
points without any model assumptions [19, 20, 24, 25]) can
serve as data. The first question is how an extraction of the
MSUGRA model parameters from kinematic endpoints
listed in Table 2 compares to an extraction from the mass
measurements listed in Table 1.
Because the extraction of masses from endpoints is

highly correlated, both approaches are only equivalent if
the complete correlation matrix of masses is taken into
account. For the experimental errors the mass determin-
ation from edges introduces non-trivial correlations in the
masses, whereas the theory is essentially uncorrelated in
masses, but non-trivially correlated in the endpoints.
Numerically, theory errors cannot be neglected. In par-

ticular, the determination of tanβ and A0 largely relies on
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the light Higgs mass, which can be computed in pertur-
bation theory [70–72]. This calculation has a parametric
error, e.g. from the top Yukawa, and a systematic error due
to unknown higher orders. The parametric errors are cor-
related with the direct mass measurements, which means
they do not enter as theory errors from the Higgs mass
calculation. The remaining theory error on the light Higgs
mass due to unknown higher-order terms can be estimated
to lie around 2GeV [70–72]. For the top pole-mass meas-
urement an experimental error of 1 GeV is expected at the
LHC and therefore used in the analysis. As long as the ex-
perimental error stays above roughly a GeV, the theory
error on the top mass from the unknown renormalization
scheme of mt at a hadron collider [79] should be small,
λQCD�GeV.
For supersymmetric partner masses in MSUGRA the-

ory errors arise mostly from the limited perturbative order
of the renormalization group running [80–83].Moreover, at
the weak scale higher-order corrections have to be taken
into account when converting Lagrangianmass parameters
into physical masses. The combined theory errors are es-
timated to an uncorrelated 1% (3%) for weakly (strongly)
interacting particles [44–46]. If a parameter point does not
predict one of the endpoints included in the set of observ-
ables, the likelihood of this parameter point is set to zero.
The errors on theMSUGRA parameters for different as-

sumptions are shown in Table 3. Changing frommassmeas-
urements to endpoints measurements (for Gaussian experi-
mental errors and no correlations) improves the errors by
a factor of more than 3 for m0 and a factor 2 for the gaug-
ino mass parameter m1/2. This improvement arises from
the absence of the correlation matrix between the mass ob-
servables. If this matrix were known, the results would be
similar. As a next step, again using only experimental er-
rors, but taking into account the correlation of the system-
atic energy-scale errors (JES and LES) a further improve-
ment of a factor 2 for the common scalar mass parameter
and a slight improvement for the gaugino mass parameter
is observed. This comparison shows that to obtain the best
precision from the LHC data, it is important to correctly es-
timate the correlation between the observables.
The impact of theory errors on the parameter determin-

ation is shown in the next columns where first the Gaussian

Table 3. Best-fit results for MSUGRA at the LHC derived from masses and endpoint
measurements with absolute errors in GeV. The big columns correspond to mass and
endpoint measurements. The subscript represents neglected, (probably approximate)
Gaussian or proper flat theory errors. The experimental error includes correlations
unless indicated otherwise in the superscript. The top mass is quoted in the on-shell
scheme

SPS1a ∆
theo-exp
zero ∆

expNoCorr
zero ∆

theo-exp
zero ∆

theo-exp
gauss ∆

theo-exp
flat

masses endpoints

m0 100 4.11 1.08 0.50 2.97 2.17
m1/2 250 1.81 0.98 0.73 2.99 2.64

tan β 10 1.69 0.87 0.65 3.36 2.45
A0 –100 36.2 23.3 21.2 51.5 49.6
mt 171.4 0.94 0.79 0.26 0.89 0.97

(approximate) and then the flat (proper) theory error is
studied. For the well-measured scalar and gaugino masses
m1/2 the theory error increases the small purely experi-
mental error considerably. For the ratio of the vacuum ex-
pectation values tanβ the theory error on the Higgs mass
becomes the dominant source of error, because the experi-
mental precision on the Higgs mass measurement is almost
a factor 10 better than its theory error. In the SPS1a pa-
rameter point the two different techniques of treating the
theory error give the same results within 20%. Note that
the precision of the top mass parameter as part of the
SUSY ensemble is slightly better than the direct top mass
measurement alone.
As expected, the correlation matrix between the dif-

ferent MSUGRA parameters is by no means diagonal.
In Table 4 m1/2 and tanβ are largely uncorrelated, as are
A0 and tanβ. The latter is somewhat unexpected in the
light of the Higgs-mass measurement, but it can be under-
stood by the pseudo-fixpoint behavior of At as a function
of A0 and by the fact that the important parameter in
the Higgs mass calculation is the light stop mass, which
depends critically on m0 and slightly on m1/2 [78]. The
two mass parameters m0 and m1/2 are strongly correlated
through the renormalization group running of the squark
and slepton masses. Similarly, A0 and m1/2 are strongly
correlated.
Through most of this analysis SoftSUSY [76] is the

workhorse for the renormalization-group evolution to link
the high-scale MSUGRAmodel parameters with the weak-
scale masses and other observables, including some higher-
order corrections. As a consistency check on the theory
errors, the observables were calculated with SoftSUSY, but
the model parameters were determined with SuSpect [43].
While the central values are shifted as expected, they are
compatible within 3σ, thus giving confidence that the esti-
mated theory errors cover at least the different theoretical
calculations.
The distribution of 10 000 individually run best-fit re-

sults to smeared data samples (pseudo-measurements) is
shown in Fig. 6. Such a histogram is simply the numerical
simulation of error propagation [84, 85] and should in the
Gaussian case reproduce the same result as a convolution
of the different Gaussian errors. For the first two rows only
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Table 4. The (symmetric) correlation matrix of all SUSY pa-
rameters in the MSUGRA fit using endpoint measurements at
the LHC and including approximate Gaussian (left panel) and
proper flat (right panel) theory errors

m0 m1/2 tanβ A0 mt

m0 1 0.485 0.523 0.042 0.063
m1/2 1 –0.100 0.648 0.449

tan β 1 –0.467 –0.192
A0 1 0.495
mt 1

m0 m1/2 tanβ A0 mt

m0 1 0.501 0.432 0.094 0.214
m1/2 1 –0.206 0.740 0.720

tan β 1 –0.401 –0.256
A0 1 0.648
mt 1

Fig. 6. SFitter output for
m0 and χ

2. For different as-
sumptions for the theoretical
error (neglected, Gaussian
and flat theoretical error from
top to bottom) histograms for
10000 pseudo-measurements
are shown. The dotted blue
line shows a fitted Gaussian
for the m0-plots and a χ

2-
distribution with 16 degrees
of freedom for the χ2-plots,
respectively

Gaussian experimental errors are assumed and (hopefully
approximate) Gaussian theory errors. Both of the result-
ing distributions for m0 are Gaussian, as are all the other
distributions not shown here. For the third row the correct
flat theory errors are shown. The m0 distribution is now
slightly too narrow to be Gaussian. On the other hand, all
one-dimensional distributions are surprisingly similar to
Gaussian. However, this just reflects the central limit theo-
rem, namely that if a distribution is probed often enough
a Gaussian distribution will be observed, independent of
the shape of the errors.
Depending on the relative impact of the different errors

and on the detailed correlations, a non-Gaussian behav-
ior can be more or less pronounced for a finite number
of attempts. For example, m1/2 is dominantly Gaussian,
even including flat theory errors, while the A0 distribution
is wide and not Gaussian at all. As a check the distribu-
tion of the log-likelihood χ2 was computed and compared
to the Gaussian assumption. For neglected or Gaussian
theory errors the log-likelihood distribution matches a χ2
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distribution with the correct number of degrees of freedom.
For flat theory errors the prescription effectively removes
measurements that are within the theory-error bands from
the counting of the degrees of freedom, thereby lowering
the effective value of χ2.
In the list of measurements listed in Table 1 the LHC

will only identify three out of four neutralinos – the
third-heaviest neutralino will be missed due to its hig-
gsino nature. Higgsino–neutralino couplings to light-flavor
fermions and sfermions are largely suppressed and can
only be observed in cascade decays through gauge bosons
or possibly a Higgs [19, 20]. The question is what hap-
pens if the fourth-heaviest neutralino is wrongly labeled as
third-heaviest. SFitter indeed finds a best-fitting parame-
ter point to fit this data set. This point is slightly shifted
in m0 and m1/2 by up to 1 GeV. The largest difference be-
tween the correctly and wrongly assigned parameter points
occurs in tanβ, which is shifted by about 2. The χ2 value
remains reasonable for both points.
While at first sight the set looks like a bona fide alterna-

tive minimum, it can easily be discarded using LHC data.
Having determined the ‘wrong’ model parameters, the full
spectrum and couplings can be predicted. In particular,
the fourth neutralino now has a mass of about 400GeV.
For example, more squark decays to χ4 than to χ3 are
predicted for this ‘wrong’ parameter point, in contradic-
tion to the data sample. Unfortunately, distinguishing such
discrete alternative descriptions relies on signatures that
should have to be seen. At the LHC, what can and what
cannot be seen is determined by standard model back-
grounds and detector effects, which makes an automated
answering algorithm unrealistic.

3.4.2 Impact of the ILC

Combining LHC data with data from a future linear col-
lider shifts the focus even further into the determination
of the errors on the MSUGRA parameters. As shown
in Table 5 the errors on the parameters from ILC meas-
urements alone are already considerably smaller than the
LHC errors. This is true for all MSUGRA parameters, be-
cause for example the missing gluino-mass measurement
at the ILC is not necessary because the weak gaugino
masses are known. The general improvement of the er-
rors is expected, since mass measurements at the ILC are
about an order of magnitude more precise. The result-

Table 5. Best-fit results for MSUGRA at the LHC (endpoints) and including ILC
measurements. Only absolute errors are given. The LHC results correspond to Table 3,
including flat theory errors

SPS1a ∆endpoints ∆ILC ∆LHC+ILC∆endpoints ∆ILC ∆LHC+ILC
exp. errors exp. and theo. errors

m0 100 0.50 0.18 0.13 2.17 0.71 0.58
m1/2 250 0.73 0.14 0.11 2.64 0.66 0.59

tan β 10 0.65 0.14 0.14 2.45 0.35 0.34
A0 –100 21.2 5.8 5.2 49.6 12.0 11.3
mt 171.4 0.26 0.12 0.12 0.97 0.12 0.12

ing improvement in precision on the model parameters
is about a factor 5. Combining ILC and LHC measure-
ments in MSUGRA only leads to a marginal additional im-
provement of the errors, even though squarks and gluinos
largely escape the ILC analyses. The reason is that the
precision of m0 (simple error calculation) is dominated by
the slepton masses alone. Comparing the LHC+ILC er-
rors with and without theory errors shows the margin for
the improvement of theory predictions, justifying the SPA
project [86–88].
The correlation between the parameter measurements

is different once the ILC measurements are included.
For example, A0 and tanβ are now largely correlated.
Such a correlation appears in the measurement of the off-
diagonal entries of the scalar mixing matrices as well as in
mh. In contrast to the LHC measurement, the top Yukawa
is now largely uncorrelated with all MSUGRA parame-
ters, because it can be independently determined using the
0.12GeV measurement of the physical top mass.

4 Weak-scale MSSM Lagrangian

If supersymmetry or other new physics is observed at the
TeV scale, the weak-scale Lagrangian should be deter-
mined from the data. High-scale models for example of
SUSY breaking then have to be inferred from these TeV-
scale data [37–40,89]. This problem is what SFitter is re-
ally designed to solve, after being tested extensively in the
lower-dimensional MSUGRA parameter space.
The complete parameter space of the MSSM can have

more than 100 parameters. However, at experiments like
the LHC some new-physics parameters can be fixed be-
cause no information on them is expected. This for ex-
ample includes CP phases [84, 85] or non-minimal flavor
violation [11–13] for weak-scale high-pT measurements at
the LHC. It also includes the first- and second-generation
trilinear couplingsAl,u,d, which in minimal flavor violation
are multiplied by the corresponding Yukawa coupling and
which beyond minimal flavor violation are very strongly
constrained.
Because at the LHC flavor information is difficult to ob-

tain on light quarks, we use an average squark mass for
left and right handed scalars. The different handedness can
be distinguished through their appearance in different cas-
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cades. The right handed squark typically decays directly
to the bino and a quark, while the left handed squark has
a sizeable coupling to the wino, leading to the usual long
decay chain. Unfortunately, in the currently experimen-
tally simulated LHC data set there is little information on
the stop–chargino sector [90]. Without this information,
any combination of B physics data with high-pT LHC data
will fall short – we postpone a detailed discussion of this
problem to a later paper [91]. In the lepton sector electrons
can easily be separated from muons. A possible unification
of the first two generations can then be determined from
the data [92, 93].
The third-generation trilinear couplings Aτ,b can in

principle play a role as off-diagonal entries in the down-
type mass matrices. However, they are multiplied by the
corresponding Yukawa terms and compete with the term
µ tanβ ∼ (60 GeV)2. Seeing effects of the trilinear coupling
would require Ab � 1400GeV, so for a low-tanβ parame-
ter point Aτ,b have no impact on the likelihood around the
correct or alternative best-fitting points. The sameAτ,b ap-
pear as parameters in the computation of the light MSSM
Higgs mass, but again their effect is negligible compared
to for example At [70–72]. There is a slim possibility that
the stau mixing angle and with it Aτ might be determined
in cascade decays similarly to the usual UED-SUSY spin
analysis [94], but this analysis has not yet been experimen-
tally confirmed.
Properly including mt this leads to the effective 19-

dimensional weak-scale MSSM parameter space listed for
example in Table 6. Obviously, the assumption of parame-
ters being irrelevant for the MSSM likelihood map can and

Table 6. List of the eight best-fitting points in the MSSM likelihood map with two alternative solutions for At. All masses are
given in GeV. The χ2 value for all points is approximately the same, so the ordering of the table is arbitrary. The parameter point
closest to the correct point is labeled as SPS1a

µ < 0 µ > 0
SPS1a

M1 96.6 175.1 103.5 365.8 98.3 176.4 105.9 365.3
M2 181.2 98.4 350.0 130.9 187.5 103.9 348.4 137.8
µ –354.1 –357.6 –177.7 –159.9 347.8 352.6 178.0 161.5
tan β 14.6 14.5 29.1 32.1 15.0 14.8 29.2 32.1

M3 583.2 583.3 583.3 583.5 583.1 583.1 583.3 583.4
Mτ̃L 114.9 2704.3 128.3 4794.2 128.0 229.9 3269.3 118.6
Mτ̃R 348.8 129.9 1292.7 130.1 2266.5 138.5 129.9 255.1
Mµ̃L 192.7 192.7 192.7 192.9 192.6 192.6 192.7 192.8
Mµ̃R 131.1 131.1 131.1 131.3 131.0 131.0 131.1 131.2
MẽL 186.3 186.4 186.4 186.5 186.2 186.2 186.4 186.4
MẽR 131.5 131.5 131.6 131.7 131.4 131.4 131.5 131.6
Mq̃3L 497.1 497.2 494.1 494.0 495.6 495.6 495.8 495.0
Mt̃R 1073.9 920.3 547.9 950.8 547.9 460.5 978.2 520.0

M
b̃R

497.3 497.3 500.4 500.9 498.5 498.5 498.7 499.6

Mq̃L 525.1 525.2 525.3 525.5 525.0 525.0 525.2 525.3
Mq̃R 511.3 511.3 511.4 511.5 511.2 511.2 511.4 511.5
At (−) –252.3 –348.4 –477.1 –259.0 –470.0 –484.3 –243.4 –465.7
At (+) 384.9 481.8 641.5 432.5 739.2 774.7 440.5 656.9
mA 350.3 725.8 263.1 1020.0 171.6 156.5 897.6 256.1
mt 171.4 171.4 171.4 171.4 171.4 171.4 171.4 171.4

has to be tested. Moreover, the SFitter analysis will show
that more than just the trilinear A parameters turn out to
be invisible at the LHC.
In contrast to the MSUGRA model tanβ is used as

a parameter in the Higgs sector and not B, because all
MSSM parameters are defined at the weak scale assum-
ing electroweak symmetry breaking. In other words, tanβ
andmA are the two Higgs-sector parameters in the MSSM
analysis. Looking at the currently confirmed LHC meas-
urements none of the heavy Higgs bosons with masses of
the order O(mA) would be seen in SPS1a, which is not
good news for the parameter determination in the Higgs
sector.
Because computing the mass spectrum in the weak-

scale MSSM does not require any shift in scales, i.e. it
does not involve renormalization group running or large
logarithms, a smaller theory error for the on-shell particle
masses should be assumed. As a rough estimate a relative
error of 1% for the masses of strongly interacting particles
and 0.5% for weakly interacting particles [44–46] are used,
plus a 2% non-parametric error on the light MSSM Higgs
boson [70–72]. Just as in Sect. 2.2 the correct flat theory
errors, (1), are used for the determination of the errors on
model parameters.

4.1 MSSM likelihood map

SFitter approaches the problem of the higher-dimensional
MSSM parameter space in analogy to the MSUGRA case,
but now organized in four steps.
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1. First, SFitter produces a set of Markov chains over the
entire parameter space. The proposal function is con-
stant, allowing the algorithm to cover the entire MSSM
space without focusing on the resolution of local like-
lihood maxima. Starting from the best five points in
this Markov chains Minuit resolves the local maxima in
the likelihood map. This procedure ensures that there
is no bias from starting points in the subsequent analy-
sis. This step 1 can be repeated with different proposal
functions, depending on the purpose of the Markov
chain SFitter computes.

2. In a second step the Markov chains and the additional
high-resolution Minuit algorithm are limited to the
gaugino–higgsino subspace M1,M2,M3, µ, tanβ and
mt. Again, the proposal function is flat, focusing on the
scan for local maxima in the likelihood map. For the 15
best local maxima in this subspace their resolution is
improved by Minuit.

3. For the best point(s) in the gaugino–higgsino sub-
space these coordinates are then fixed. The step-3
Markov chain probes the additional scalar parameter
space around the local maxima in the gaugino–higgsino
space, assuming a Breit–Wigner proposal function with
a width of 1% of the entire range in each direction. The
resolution of the five best points is improved by Minuit.

4. Finally, Minuit traces the correlations between the
gaugino–higgsino parameter space and the remaining
scalar mass parameters. Once the global best-fitting pa-
rameter point is identified the errors on all parameters
are determined using the usual smeared set of pseudo-
measurements and flat theory errors.

All steps in the SFitter strategy are either Markov
chains to globally probe the parameter space (with a flat or
a Breit–Wigner proposal function), or a Minuit hill climber
to identify the likelihood maxima with high resolution.
This approach can be applied to any problem involving
a high-dimensional parameter space, but the details of
course have to be adjusted.
The large number of maxima mapped out in the second

step corresponds to the expectations from the MSUGRA
model: starting from the true parameter point an alter-
native solution with a switched sign in µ should exist. In
the MSSM the hierarchy of M1, M2 and |µ| can be inter-
changed, which altogether can giveO(10) distinct maxima
in the likelihood map. To allow for additional structures or
several best points in the Markov chain to correspond to
the same local maximum, we increase the number of likeli-
hood maxima returned after step 2 to 15.
Last but not least, just as in theMSUGRA case alterna-

tive likelihood maxima triggered by correlations between
the rather poorly measured parameters At, tanβ and the
right handed stop mass are expected. One could imagine
that secondary maxima appear in the At–mt plane, like it
happened in the MSUGRA case. However, this correlation
is not clearly visible in theMSSM because of a lack of direct
measurements in the stop sector.
In analogy to the MSUGRA analysis general features

of the log-likelihood map of the MSSM parameter space
are studied before proceeding with profile likelihood or

Bayesian probability distributions. Finally the proper
error analysis is performed. The first question is the pres-
ence of alternative likelihoodmaxima in the MSSM param-
eter space.
Table 6 lists the secondary local maxima in the like-

lihood map, focusing on the neutralino–chargino sector.
These entries appear as a distinct secondary maximum in
step 2 of SFitter. Each of them goes through steps 3 and
4, where it is explicitly checked that for a given value of
mt no secondary likelihood maxima in the scalar sector
alone turn up. In step 4 the resolution on the local max-
ima is improved and the residual correlation between the
neutralino–chargino and the scalar sectors are evaluated.
The most interesting feature in the different best-fitting

points listed in Table 6 is the structure of the neutralino
sector. For a fixed sign of µ four equally good solutions are
found, which can be classified by the ordering of the mass
parameters: M1 <M2 < |µ| is the correct MSUGRA-type
solution. The reverse ordering of the two gaugino masses
M2 <M1 < |µ| is equally likely. In both cases the miss-
ing neutralino will be a higgsino. Apart from these two
light-gaugino scenarios the second-lightest neutralino can
be mostly a higgsino, which corresponds toM1 < |µ|<M2
andM2 < |µ|<M1. Note that given the set of LHC meas-
urements the two gaugino masses can always be switched
as long as there are no chargino constraints. The one neu-
tralino that cannot be a higgsino is the LSP, because in
that case the µ parameter would also affect the second neu-
tralino mass and would have to be heavily tuned with the
gaugino masses. Such a solution does not have a compara-
ble log-likelihood to the other 2×4 scenarios.
In spite of the different gaugino and higgsino contents,

the physical masses of the three visible neutralinos are the
same in all points listed in Table 6, as is the precisely meas-
ured light Higgs mass. The shift in tanβ for the correct
SPS1a parameter point is an effect of the smeared data set
combined with the rather poor constraints on this param-
eter and is within the error bar (see later in this section).
Looking at Table 2 there is an important feature of the

set of measurements: there are 22 measurements, count-
ing the measurements involving ml̃ separately for elec-
trons and muons. Using these naively it should be pos-
sible to completely constrain a 19-dimensional parameter
space. However, the situation is more complicated. These
22 measurements are constructed from only 15 underlying
masses. The additional measurements will resolve ambigu-
ities and improve errors, but they will not constrain any
additional parameters. Looking at the set of measurements
and at Table 9 with the errors, five model parameters turn
out to be not well constrained. One problem, which has al-
ready been discussed, is the heavy Higgs mass mA. The
next poorly determined parameters areMt̃R andAt. These
parameters occur in the stop sector, but none of them ap-
pear in any of the edge measurements.
Moreover, there is no good direct measurement of tanβ.

Looking at the neutralino and sfermion mixing matrices
any effect in changing tanβ can always be accommodated
by a corresponding change in another parameter. This is
particularly obvious in the poorly measured stau sector.
There, only the lighter ofMτ̃L or Mτ̃R is determined from
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the kinematic endpoint of the ττ invariant-mass distribu-
tion. The heavier mass parameter and tanβ can compen-
sate each other’s effects freely. In contrast, the light-flavor
slepton masses for all maxima are identical. This is an ef-
fect of the cascade measurements, which very strongly con-
strain the mass difference between the neutralinos and the
light-flavor sleptons.
There is exactly one measurement that strongly links

these otherwise unconstrained parameters: the mass of the
lightest Higgs boson mh. This leaves a four-dimensional
surface with a constant log-likelihood. As the dependence
between the different parameters is highly non-linear, this
limits the range in these parameters. Outside this surface
the Higgs mass does not reach the measured value (or other
elementary constraints like non-tachyonic stops are vio-
lated) no matter what the other parameters are. Therefore
a meaningful error can still be assigned to at least some of
the parameters, while others turn out to be basically unde-
termined.
The parameter points in Table 6 should therefore be

seen as a ‘typical’ set of different solutions for these param-
eters. The common link, the lightest Higgs mass, illustrates
the dependence on the individual parameters.
To illustrate the effect of the minimum surface two

values for At are quoted in the table of minima. One of
them appears as a solution of the minimization proced-
ure, while the other one is generated by an additional step
where every parameter except At is kept fixed. The mini-
mization is started from the original value for |At| but with
a flipped sign. This procedure gives only one additional
solution. The significant shift in |At| shows the sizeable cor-
relations with the other parameters. Its origin is the stop
contribution to the lightest Higgs mass that contains sub-
leading terms linear in At. As a matter of fact, in other
supersymmetric parameter points where µ/ tanβ is of the
same order as At, much larger terms linear in At would ap-
pear, while in SPS1a the linear contributions of At to mh
are strongly suppressed compared to the quadratic terms.
The two alternative solutionswith flipped signs ofAt are

particularly interesting, since two alternativeMSUGRA so-
lutions have already been observed in Sect. 3.1. There, the
lack of measurements is compensated by the requirement
of parameter unification at the GUT scale. In the general
MSSM an alternative solution exists even if all parameters
except for At are kept fixed. If the four-dimensional mini-
mum surface can be constrained by further measurements,
this degeneracywill vanish and correlations will require the
other parameters to shift, in order to accommodate two
distinct point-like minima. The prime candidate for such
a shift is the topmass, as known from the SUGRA study.
Technically, searching for alternative local maxima in

the log-likelihood map it is much easier to use Gaussian
theory errors. Of course, this assumption is an approxima-
tion and cannot be used to quote errors on the parameter
points. Moreover, it can be misleading when it comes to
ranking the alternative solutions according to their log-
likelihood. On the other hand, switching from Gaussian to
flat theory errors will only lead to a higher degeneracy of
the log-likelihood because of the flat behavior of χ2 and al-
ready for Gaussian theory errors all alternative solutions

are equally likely. Flat theory errors do not lead to addi-
tional alternative likelihood maxima or structures in the
likelihoodmap. In particular, they do not change the state-
ment that the lightest neutralino has to be a gaugino to
explain the cascade-decay measurements.
As discussed in the MSUGRA case, these different in-

terpretations of the LHC data set could at least in part be
disentangled by additional channels that should open for
different ‘wrong’ mass parameters.

4.2 Alternative mass assignment

Another test of general features of the MSSM likeli-
hood just based on best-fitting points is to exchange the
two heavy neutralinos in the LHC measurements as dis-
cussed in Sect. 3.4.1 for MSUGRA. For this comparison
the time-consuming error estimate at the end of step 4 is
neglected and the log-likelihood values for the two best-
fitting points are compared. The results for the two fits
with the correct and swapped neutralino mass assign-
ments are shown in Table 7. After the discussion in the
last section it is not surprising that the likelihood for the
two hypotheses in their best-fitting points is not signifi-
cantly different. There are small shifts in all parameters
entering the neutralino mass matrix, but none of them
appear significant. The central values for the four neu-
tralino masses move from {98.5, 175.7, 353.5, 374.9}GeV
to {98.5, 175.8, 375.0, 393.3}GeV. The correctly identified
fourth neutralino in the first set has the same mass as the
third neutralino in the swapped case.
The consistent shift in the extracted value of tanβ is

an effect of the smeared parameter point. The relatively
large shift in the heavy Higgs mass between the two sce-
narios looks more dramatic than it is. When taking into
account the error on this parameter shown in Table 9 this
shift will turn out to be well within the error bands and
largely reflect different starting values combined with a flat
log-likelihood distribution in mA. Even though the heavy
Higgs mass is vastly different between the two cases, the
light Higgs mass in both best-fitting points is identical.
This means that for the typical LHC precision the param-
eter point SPS1a is in the decoupling limit of the heavy
MSSM Higgs states.
It might be possible to search for higgsinos in cascade

decays involving gauge bosons. Such a measurement could
remove this degeneracy, namely the mis-identification for
example of three out of four neutralinos. The same would
be true if charginomasses could be included in the analysis,
which are not part of the standard SPS1a sample [90].

4.3 Profile likelihood and Bayesian probability

The organization of SFitter in the MSSM case implies that
it is not possible to produce a high-resolutionMarkov chain
for the entire 19-dimensional MSSM parameter space. The
only Markov chain covering the entire space is obtained at
the end of step 1, and will be fairly coarse. On the other
hand, a dense-coverage log-likelihood map of the MSSM
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Table 7. Result for the MSSM parameter determination using the LHC endpoint measurements
assuming either the third or fourth neutralino to be missing. The log-likelihood for both points is
almost identical. All masses are given in GeV

SPS1a correct inverted SPS1a correct inverted

M1 103.1 102.1 101.6 M2 192.9 193.6 191.0
M3 577.9 582.0 582.1 tanβ 10.0 7.2 7.8
mA 394.9 394.0 299.3 µ 353.7 347.7 369.3

MẽL 194.4 192.3 192.3 MẽR 135.8 134.8 134.8
Mµ̃L 194.4 191.0 191.0 Mµ̃R 135.8 134.7 134.7
Mτ̃L 193.6 192.9 185.7 Mτ̃R 133.4 128.1 129.9
Mq̃L 526.6 527.0 527.1 Mq̃R 508.1 514.8 514.9
Mq̃3L 480.8 477.9 478.5 Mt̃R 408.3 423.6 187.6

M
b̃R

502.9 513.7 513.2

Al1,2 –251.1 fixed 0 Aτ –249.4 fixed 0
Ad1,2 –821.8 fixed 0 Ab –763.4 fixed 0
Au1,2 –657.2 fixed 0 At –490.9 –487.7 –484.9

mt 171.4 172.2 172.2

parameter space as for the MSUGRA space cannot be pro-
duced because of the large number of dimensions. This
means that the analysis has to follow two paths in parallel,
namely the analysis of global features using aMarkov chain
and the analysis of local features using additional Minuit-
type algorithms described in the appendix.
The Markov chain produced in step 1 covers the en-

tire MSSM parameter space. It should be used to compute
lower-dimensional profile likelihoods or Bayesian probabil-
ity distributions, following the discussion in Sect. 3. The
problem is that to guarantee coverage of the entire MSSM
parameter space a flat proposal function is used, which
reduces the acceptance probability below the per-mille
level. This acceptance rate is fine for the intended pur-
pose, namely to define an unbiased starting point for the
maximum searches while making sure that no regions of
parameter space are missed. In a repeat of step 1 a more
appropriate proposal function can be used, for example
a Breit–Wigner shape, with a width of one percent of the
total parameter range in each direction.
A slight technical complication is that weightedMarkov

chains require an accurate estimate of the size of excluded
regions, i.e. regions with χ2 = 0. For example, the meas-
urements of a mass difference in Table 2 includes the sign
of this mass difference. Parameter points with an inverted
mass hierarchy are assigned a zero log-likelihood, which
means that one measurement can remove half of the en-
tire parameter space. This feature of the kinematic end-
points reduces the relative volume of valid points in the
exclusive log-likelihood map to a very small fraction and
introduces large absolute errors on the determined size of
this fraction. At this stage, these statistical fluctuations
dominate the behavior of the marginalized Bayesian prob-
abilities. To illustrate the log-likelihoodmap the number of
points per bin, i.e. the traditional Markov chain algorithm,
is used. For a small fraction of allowed parameter points
this distribution is statistically more stable. As a draw-
back, only the relative size of entries in the log-likelihood
map is significant.

In Fig. 7 the marginalized Bayesian pdf is shown for
selected MSSM parameters using an exclusive likelihood
map with a Breit–Wigner proposal function. The two-
dimensionalM1–M2 plane shows two branches, where one
of the two gauginos has to form the lightest neutralino.
The second-lightest neutralino can be either a gaugino or
a higgsino. In the latter case the gaugino mass, which does
not fix the LSP mass, can either determine the last re-
maining neutralino mass or it can essentially decouple. In
the two-dimensional distribution a decoupled M1 corres-
ponds for example to small M2 giving the correct LSP
mass and a higgsino-like second-lightest neutralino. In the
one-dimensional distribution forM1, there is a broad peak
at the correct value, and a washed-out extended tail to
large values. This tail is not a noise effect but corresponds
to the described decoupling. The same M1 distribution
computed as a profile likelihood illustrates the problem
with the Markov chain from step 1: in comparison to the
Bayesian pdf from the non-weightedMarkov chain the pro-
file likelihood is dominated by noise.
The selectron and the wino masses in the second panel

of Fig. 7 are uncorrelated, which in retrospect justifies the
4-step organization of SFitter. Because of the explicit ap-
pearance of the gluino–sbottom mass difference in the list
of measurements, Table 2, the gaugino–higgsino sector and
the scalar sector are if at all correlated through the gluino
– which means that M3 could as well be held fixed in step
2. This has little effect on the final result, but the gluino–
sbottom correlation will be the dominant effect in step 4 of
the SFitter strategy.
Given the lack of correlations between the neutralino–

chargino sector and the scalar sector illustrated by Fig. 7,
information from the Markov chain can be extracted in
the neutralino–chargino sector, which SFitter computes in
step 2. Fixing all scalar parameters is equivalent to scan-
ning them over their orthogonal parameter space, provided
the correlation between the sectors is negligible, i.e. the
dimensions of the parameter space are indeed orthogonal.
In Fig. 8 profile likelihoods (as defined in Sect. 3) are shown
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Fig. 7. Marginalized Bayesian likelihoods (first three panels) and profile likelihood (bottom-right panel) for the complete MSSM

parameter space (step 1) from SFitter. A Breit–Wigner proposal function is used to produce a Markov chain with 107 points

forM1,2 and µ. In theM1–M2 plane the same structure as
in Fig. 7 is observed: one of the two gaugino masses corres-
ponds to the measured LSP mass while the other gaugino
mass can in principle decouple. In the M1,2–µ plane the
three neutralino masses can be identified in theM1,2 direc-
tions. For light M1,2 the higgsino mass parameter |µ| can
be large, while for one heavy gaugino |µ| is constrained to
be small.
The one-dimensional profile likelihood for example for

M1 again shows these three options with peaks around
100, 200 and 350 GeV, corresponding to the three meas-
ured neutralino masses. The peak above 400GeV is an
alternative log-likelihood maximum, which does not cor-
respond to a measured neutralino mass. For M2 there is
again the 100GeV peak, where the LSP is a wino. The
correct solution around 200GeV is merged with the first
maximum, while the third peak around 300 GeV corres-
ponds to at least one light higgsino. In the profile likelihood
for µ the two signs of µ both produce reasonable results.
The 100GeV range does not show a distinctive peak be-
cause it would require the two lightest neutralinos to be
higgsinos, which means a high degree of tuning in all other
parameters. However, peaks around 200GeV are clearly
observed and in the heavy-neutralino range for both signs
of µ.
Because the Markov chains for the neutralino–chargino

sector are distinct, no information on the correlations be-
tween the two sectors after step 1 of our SFitter strat-

egy is available. Using only the scalar-sector Markov chain
from step 3, a small correlation is present in the two scalar
masses occurring in the squark cascades. They are in prin-
ciple slightly correlated through the kinematic endpoints
from the left handed squark decay, but noise effects numer-
ically dominate the profile likelihood. The one-dimensional
profile likelihood for the squark mass parameter, however,
is clearly peaked around the correct value.
The combination of these two Markov chains is of

course not suited to extract properly normalized probabil-
ity distributions, because the scalar sector is simply fixed
to some best-fit values out of step 1. On the other hand,
these incomplete Markov chains show that our likelihood
map for the MSSM parameter space works and contains
the relevant structures, but that after step 1 it is somewhat
noisy.
In addition to the profile likelihoods shown in Fig. 8,

SFitter also provides Bayesian probability distributions.
For the details of both approaches see Sect. 3. While the
structures in the two-dimensional M1–M2 plane in Fig. 9
are similar to the profile likelihood, the one-dimensional
histograms show two significant differences: first, the
Bayesian pdf forM1,2 shows the same three physical solu-
tions as the corresponding profile likelihood, namely one
peak around 100GeV, another one around 200GeV, sepa-
rated only by one bin from the edge of the 100GeV peak,
and a heavy-neutralino peak above 300GeV (more visible
forM1). However, the peaks in the Bayesian pdf are much
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Fig. 8. Profile likelihoods for the MSSM from SFitter. The distributions of the neutralino sector are derived from the log-
likelihood map of the neutralino sector alone, using the Markov chain after step 2 in the SFitter strategy

wider, as expected from the discussion of the MSUGRA
case. The two lower peaks in M2 even appear as one, with
a maximum around 150 GeV, which is a typical Bayesian
volume effect.
The second difference between the profile likelihood

and the Bayesian pdf is that the Bayesian pdf can an-

swer the question: which neutralino is the most likely to be
bino-like. Note that only the neutralino–chargino Markov
chain from step 2 is used, so the probabilistic interpreta-
tion has to be taken with a grain of salt. However, while
M1 has a best profile-likelihood entry around 350GeV, the
Bayesian pdf shows a clear maximum for around 100GeV.
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Fig. 9. Marginalized Bayesian probabilities for the MSSM from SFitter. The distributions of the neutralino sector are derived
from the log-likelihood map of the neutralino sector alone, using the Markov chain after step 2 in the SFitter strategy

As usual, SFitter leaves the interpretation of the two differ-
ent approaches to the reader.
As expected, the difference between the two signs of µ

is small, but both of them are driven to small values of |µ|,
again by volume effects. This arises because of the decou-
pling of one of the two gaugino masses for a light higgsino,

while for two light gauginos the higgsino mass is still deter-
mined by the fourth neutralino. The squark mass as a com-
parably well-measured and less noise-dominated parame-
ter shows the kind of behavior known from the MSUGRA
case: the profile likelihood is much more strongly peaked
than the Bayesian pdf.
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4.4 Precision analysis

Similarly to the MSUGRA case, one of the most important
outcomes of the SFitter parameter extraction is the proper
definition of the errors of all extracted model parameters.
The flat theory errors are now only weak-scale uncertain-
ties, for example due to the translation of mass parameters
into physicalmasses or due to higher-order effects in the ob-
servables. Compared to the MSUGRA case a proper error
analysis in the MSSM is even more important: the errors at
the end of the day will determine if and how well we can ex-
tract information on the SUSY breakingmechanism.

4.4.1 Errors on MSSM parameters

For the best-fit parameter point, we show the results for
the error determination in Tables 9 and 8. The general fea-
ture is that the LHC is not sensitive to several parameters.
Some of them, namely the trilinear mixing terms Ai, are
fixed in the fit. Others, like the heavier stau-mass and stop-
mass parameters or the pseudo-scalar Higgs mass turn out
to be unconstrained. In the stau sector only the lighter of
the two mass eigenstates is observed in Table 1. Because
of the non-zero mixing between the two staus, the rela-
tive error on the mass parameter is much larger than the
experimental error on the lighter stau mass. Because the

Table 8. Result for the general MSSM parameter determination in SPS1a assuming vanishing the-
ory errors. As experimental measurements the kinematic endpoint measurements given in Table 2 are
used for the LHC column, and the mass measurements given in Table 1 for the ILC column. In the
LHC+ILC column these two measurements sets are combined. Shown are the nominal parameter
values and the result after fits to the different data sets. All masses are given in GeV

LHC ILC LHC+ILC SPS1a

tanβ 9.8±2.3 17.6± 9.6 16.4± 7.0 10.0
M1 101.5±4.6 102.8± 0.72 102.7± 0.53 103.1
M2 191.7±4.8 192.3± 2.6 191.7± 1.7 192.9
M3 575.7±7.7 fixed 500 578.0± 6.3 577.9

Mτ̃L 196.2±O(102) 185.4±14.3 187.8±13.6 193.6
Mτ̃R 136.2±36.5 142.0±16.4 139.0±15.1 133.4
Mµ̃L 192.6±5.3 194.4± 0.53 194.4± 0.51 194.4
Mµ̃R 134.0±4.8 135.8± 0.26 135.7± 0.16 135.8
MẽL 192.7±5.3 194.4± 0.24 194.4± 0.22 194.4
MẽR 134.0±4.8 135.8± 0.17 135.7± 0.12 135.8
Mq̃3L 478.2±9.4 509.1±O(2×102) 489.6±10.7 480.8

Mt̃R 429.5±O(102) 427.6±O(102) 402.9±50.3 408.3

M
b̃R

501.2±10.0 fixed 500 494.4±10.5 502.9

Mq̃L 523.6±8.4 fixed 500 526.7± 4.9 526.6
Mq̃R 506.2±11.7 fixed 500 508.2±10.8 508.1

Aτ fixed 0 2496.3±O(104) 2681.6±O(104) –249.4
At –500.6±58.4 –521.8±160.1 –490.3±166.8 –490.9

Ab fixed 0 fixed 0 3084.9±O(104) –763.4
Al1,2 fixed 0 fixed 0 fixed 0 –251.1
Au1,2 fixed 0 fixed 0 fixed 0 –657.2
Ad1,2 fixed 0 fixed 0 fixed 0 –821.8

mA 446.1±O(103) 393.4± 1.1 393.4± 1.1 394.9
µ 350.9±7.3 355.2± 2.5 355.2± 2.3 353.7
mt 171.4±1.0 171.4± 0.12 171.4± 0.12 171.4

heavyHiggs bosons are for all practical purposes decoupled
at the LHC, the parameters in the Higgs sector are tanβ
and the lightest stop mass. Because the sbottommasses are
known from the gluino cascade decay, the stopmass matrix
has two remaining free parameters.
As expected in the slepton sector, the ILC improves the

precision by an order of magnitude in the parameters be it
with or without theory errors. Again the ILC alone, where
parameters can be measured, dominates the precision. It
is instructive to compare the effect of theory errors on the
parameter determination. While the ILC loses a factor 5
in precision, going from a per-mille determination to half
a percent, the LHC loses roughly less than a factor 2. The
naive expectation would have called for only the ILCmeas-
urement being affected. However, the LHC measurements
being functions of several sparticle masses, the error propa-
gation leads also to a significant theory error (Table 2). In
particular the �� mass theory error is larger than the ex-
perimental error. The strength of the LHC is clearly visible
in the sector of sparticles with color quantum numbers.
While for the LHC and ILC separately not all param-

eters can be determined, the combination of the two ma-
chines allows one to determine all parameters (with the
exception of the first- and second-generation trilinear cou-
plings) with good precision. The combination of LHC and
ILC measurements can be particularly useful to determine
the link to dark matter observables [41, 95–103].
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Table 9. Result for the general MSSM parameter determination in SPS1a assuming flat theory er-
rors. As experimental measurements the kinematic endpoint measurements given in Table 2 are used
for the LHC column, and the mass measurements given in Table 1 for the ILC column. In the LHC+
ILC column these two measurements sets are combined. Shown are the nominal parameter values and
the result after fits to the different data sets. All masses are given in GeV

LHC ILC LHC+ILC SPS1a

tanβ 10.0±4.5 12.1±7.0 12.6±6.2 10.0
M1 102.1±7.8 103.3±1.1 103.2±0.95 103.1
M2 193.3±7.8 194.1±3.3 193.3±2.6 192.9
M3 577.2±14.5 fixed 500 581.0±15.1 577.9

Mτ̃L 227.8±O(103) 190.7±9.1 190.3±9.8 193.6

Mτ̃R 164.1±O(103) 136.1±10.3 136.5±11.1 133.4
Mµ̃L 193.2±8.8 194.5±1.3 194.5±1.2 194.4
Mµ̃R 135.0±8.3 135.9±0.87 136.0±0.79 135.8
MẽL 193.3±8.8 194.4±0.91 194.4±0.84 194.4
MẽR 135.0±8.3 135.8±0.82 135.9±0.73 135.8

Mq̃3L 481.4±22.0 499.4±O(102) 493.1±23.2 480.8

Mt̃R 415.8±O(102) 434.7±O(4×102) 412.7±63.2 408.3

M
b̃R

501.7±17.9 fixed 500 502.4±23.8 502.9

Mq̃L 524.6±14.5 fixed 500 526.1±7.2 526.6
Mq̃R 507.3±17.5 fixed 500 509.0±19.2 508.1

Aτ fixed 0 613.4±O(104) 764.7±O(104) –249.4

At –509.1±86.7 –524.1±O(103) –493.1±262.9 –490.9

Ab fixed 0 fixed 0 199.6±O(104) –763.4
Al1,2 fixed 0 fixed 0 fixed 0 –251.1
Au1,2 fixed 0 fixed 0 fixed 0 –657.2
Ad1,2 fixed 0 fixed 0 fixed 0 –821.8

mA 406.3±O(103) 393.8±1.6 393.7±1.6 394.9
µ 350.5±14.5 354.8±3.1 354.7±3.0 353.7
mt 171.4±1.0 171.4±0.12 171.4±0.12 171.4

4.4.2 Testing unification

Once the parameters of the weak-scale MSSM Lagrangian
have been determined, the next step is to extrapolate
the parameters all the way to the Planck scale. Inspired
by the apparent unification of the gauge couplings [104–
106] in the MSSM the question arises if any other run-
ning parameters unify at a higher scale as shown in the
pioneering work in [60–65,107–109]. Such structures can
give hints for example about supersymmetry breaking. For
two reasons, the prime candidates for unification in su-
persymmetry are the gaugino masses: first, in contrast
to the scalar masses, the three gaugino masses can well
be argued to belong to the same sector of physics, being
the partners of gauge bosons of a possibly unified gauge
group. Secondly, interactions between the hidden SUSY-
breaking sector and the MSSM particle content can af-
fect the unification pattern, in particular for scalars. In
that case, scalar mass unification might be replaced by
much less obvious sum rules for scalar masses at some high
scale [110, 111].
Technically, upwards running is considerably more

complicated [43, 112] than starting from a unification scale
and testing the unification hypothesis by comparing to
the weak-scale particle spectrum. For example, it is by no
means guaranteed that the renormalization group running
will converge for weak-scale input values far away from the

top–down prediction. In Fig. 10 the extrapolation of the
central values of the gaugino mass parameters is shown
using SuSpect. As expected in SPS1a, the mass parameters
unify at the GUT scale. This figure is only a proof of con-
cept for the SFitter approach to testing unification. A full
study of the extrapolation to the high scale including error
estimate is beyond the scope of this paper [112].

Fig. 10. SFitter/SuSpect output for the upward renormaliza-
tion group running of the three gaugino masses in the MSSM.
The central values are shown without error bars, a more de-
tailed study of bottom-up running is beyond the scope of this
paper [112]
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5 Outlook

If the LHC is successful in discovering physics beyond the
standard model, the focus of its running will be on the
interpretation of this new physics, identifying the ultravio-
let completion of the standard model. The situation would
be similar to current fits to electroweak precision data,
flavor-physics data and dark matter constraints, but likely
considerably more complex. This increase in complexity is
a challenge to the statistical tools employed to study high-
dimensional physics parameter spaces.
SFitter translates measurements for example of new

particles’ masses into information on the weak-scale La-
grangian. Ituses a combinationof (weighted)Markov chains
and modified Minuit algorithms. The roughly 20-dimens-
ional and highly correlated weak-scale MSSM parameter
space can be controlled by SFitter. The correct description
of all errors is a challenge for any high-dimensional param-
eter determination. However, especially to distinguish dif-
ferent new-physics models, a proper error propagation is
crucial. Therefore, SFitter includes the proper treatment
of statistical and systematic experimental errors as well as
(flat) theory errors, including arbitrary correlation.
As an example two physics models, the low-dimensional

toy model MSUGRA and the effectively 19-dimensional
MSSM, are analyzed in detail. SFitter first produces an
unintegrated log-likelihood map using Markov chain tech-
niques. For both models this likelihood map is studied and
distinct local maxima are identified, which SFitter resolves
using modified Minuit algorithms. For the best-fitting pa-
rameter points the error on the extracted model param-
eters are determined, properly including all experimental
and theory errors.
Alternative maxima are for example due to the sign

of the higgsino mass parameter, to the structure of the
neutralino mass matrix, or to a correlation between the
top Yukawa and the trilinear mixing parameter. While
for MSUGRA these local maxima correspond to differ-
ent values of the log-likelihood, they are degenerate in the
MSSM and cannot be resolved using the relative likelihood
values.
Following either a profile likelihood or a Bayesian prob-

ability approach SFitter then computes lower-dimensional
likelihood/probability distributions. For MSUGRA as well
for the MSSM, distributions in one and two dimensions are
shown, illustrating the strengths and weaknesses of each
of the two approaches. In the MSSM parameter space the
complete log-likelihood map is complemented by corres-
ponding maps over the approximately orthogonal gaugino–
higgsino and scalar parameter spaces. Such analyses of
lower-dimensional spaces lead to a less noisy likelihood
map and can be useful in addition to the completely exclu-
sive likelihood map.
The determination of the parameters of the weak-scale

Lagrangian from the LHC and the ILC and their errors are
an essential ingredient to test unification. The SFitter ap-
proach is not limited to studies of the supersymmetric pa-
rameter space. It can andwill be used to study any problem
including mapping high-dimensional measurement and pa-
rameter spaces in the LHC era.
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Appendix A: Weighted Markov chains

Markov chain Monte Carlos (MCMCs) have for a long
time been a tool to evaluate functions for systems with
a very large number of degrees of freedom. An example
in BSM physics would be the prediction of a distribution
for squark–gluino cross sections at the LHC, given the cur-
rently available data and a supersymmetric model [66–69].
Computing LHC cross sections involves integrating over
parton densities and is therefore expensive. Similarly, one
can predict distributions of dark matter detection rates
given the current data, which again is a fairly expensive
computation for each parameter point. The role of the
MCMC is to provide us with a representative sample of
parameter points, where in our case ‘representative’ is de-
fined by the likelihood p(d|m) describing the probability
of a model-parameter point being correct given our LHC
data. In general, this can be any normalized probability
distribution p(m).
We produce a sample that with respect to p(m) is

a smaller copy of the complete parameter space using the
Metropolis–Hastings algorithm [113, 114]. This algorithm
is nothing but an iterative chain of decisions if a new point
is accepted as part of the Markov chain. As long as the
probability of proposing a point m′ while sitting in m
is the same as the probability of proposing m sitting in
m′, the decision if the new point gets accepted depends
solely on the values p(m) and p(m′) of the probability
we want to map: if the new p(m′) > p(m) then the new
point is accepted, otherwise it gets accepted with the prob-
ability p(m′)/p(m). Once this decision is made, the next
parameter point m′′ is proposed, starting from either m
orm′.
The proposal probability is the probability q(m→m′)

with which we find new points that then get suggested as
new entries in the Markov chain. Its choice is an internal
choice in the Metropolis–Hastings algorithm, but it can
have a huge impact on the efficiency of probing the model-
parameter space. For example, dark matter constraints are
notoriously difficult, because they generate narrow ridges
in p(m), which are not aligned with any of the model pa-
rameters [66–69, 97–100]. LHC measurements for example
are less restrictive, but more likely to develop distinct
local maxima. The proposal function must be able to jump
back and forth between these hills efficiently. For example
a Gaussian distribution, which is indeed symmetric be-
tween the starting point and the target point, will have
too suppressed tails to cover the MSSM parameter space.
We could instead add a constant to the proposal proba-
bility, or use a Breit–Wigner distribution instead. In the
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more general case, in which the proposal distribution is not
symmetric, the decision for a new point is not based on
p(m′)/p(m), but on [p(m′)q(m→m′)]/[p(m)q(m′→m)].
The only two requirements on the choice of q(m→m′) are
that the proposal probability cannot have a memory of the
earlier points in the Markov chain (detailed balance), and
any point must have a non-zero probability of being pro-
posed after a finite number of steps. The latter ensures
coverage of the whole parameter space. The proposal func-
tion can for example be symmetric inm andm′ or it can be
independent of m′ altogether. The efficiency for building
a useful Markov chain is of course closely linked to the effi-
ciency of finding new parameter points, which get accepted
with a reasonable probability. Generally, 25% is considered
an optimal choice.
In comparison to the usual Markov chain, the problem

we are tackling with SFitter is simpler: we are only inter-
ested in the likelihood of some LHC measurement given
a parameter point in our model, interpreted as a map
over the model’s parameter space: p(m) ≡ p(d|m). Start-
ing from this likelihood map we can either compute pro-
file likelihoods of lower-dimensional parameter spaces or
a Bayesian posterior probability distribution p(m|d). This
means that naively we would produce a representative
sample with respect to this probability p(m), then eval-
uate again the same probability p(m), add an integra-
tion measure or find the profile likelihood, bin it, and ob-
tain a likelihood or probability distribution in a subspace
of the complete vector m. To save computing time we
should obviously retain the probability of each point in
the Markov chain, similar to a phase-space Monte Carlo
where we produce weighted events for integrated cross
sections.
To briefly illustrate the possible gain in efficiency con-

sider a binary system, where each parameter point enters
one of two bins and the probability p of the two bins is
divided as 10% : 90%. We need at least 10 unweighted en-
tries in the Markov chain to get the correct answer for the
first time. Until then the probability associated with the
first bin will be either zero or too large. If we use weighted
events, two entries can already be sufficient, and each addi-
tional entry can improve the error on our extraction of the
relative probability.
Obviously, we cannot just keep the weight for each

point in the Markov chain and multiply it into the binning
procedure, since this would double-count this weight. In-
stead, we use a modified form of binning [115]. We first
consider the case that p �= 0 everywhere and then general-
ize this result to also include regions with p= 0.
We define an inverse averaging in each bin as

Pbin(p �= 0) =
bincount

∑bincount
i=1 1/p

, (A.1)

where the sum in the denominator is over all points in the
Markov chain that belong into this bin, counted with their
correct multiplicity. It is easy to see that this gives the right

answer. The numerator can be written as
∑bincount
i=1 1. Now

we take the limit of infinitely many points, so both sums

turn into an integral

Pbin(p �= 0) =

∫
dx w(x) ·1

∫
dx w(x)/p(x)

, (A.2)

where w(x) is an arbitrary weight function with
∫
dx w(x)

= 1. We choose w(x) = p(x) and obtain the desired result

Pbin(p �= 0) =
1

V (p �= 0)

∫

dx p(x) , (A.3)

where V (p �= 0) is the volume of the bin in the parameter
space.
Note that this expression is only defined for p �= 0. This

means we need to correct for regions where p= 0, as points
in such regions will never enter the Markov chain. We store
all points that we generate as suggested points during the
evaluation of the Markov chain and that are rejected be-
cause the probability is zero and compute the correction
factor

Pbin = Pbin(p �= 0)

(

1−

∑zerocount
i=1 P (mi→m′i)

−1

zerocount ·Vbin

)

.

(A.4)

P (m→m′) is the probability of suggesting m′ from m.
For our weighted Markov chain technique m is the pre-
vious point in the Markov chain and m′ is the proposed
point with p= 0. Vbin is the volume of the bin. We need to
show that the second term in the bracket turns to Vbin(p=
0)/Vbin, the fraction of volume inside the bin where p van-
ishes. To do this we add an additional sum

∑zerocount
i=1 P (mi→m′i)

−1

zerocount ·Vbin

=

∑zerocount
i=1

∑k
j=1 P (mi→m

′
i,j)
−1

zerocount ·Vbin
, (A.5)

with k = 1 and m′i,1 =m
′
i. We now take the newly intro-

duced sum in the numerator as a very crude approxima-
tion to the corresponding Monte Carlo integral, effectively
taking the limit of infinite k. This is exactly the prob-
ability of hitting the region where p = 0 times the total
volume, which is just Vbin(p = 0). P (mi →m′i,j) is the
weight function of the Monte Carlo integration. Canceling
zerocount in numerator and denominator gives the desired
form.
So far, we have discussed this weighting technique using

a probability p. Markov chains, however, are more general.
They allow every function f that is non-negative every-
where to be used as potential, and SFitter uses 1/χ2 as
potential. It is easy to see that the expressions given above
remain valid, as the normalization constant drops out in
the final results. The resulting P is then an average of f
over the bin. In the special case that f is constant we would
obtain f again.
For details of these weighted Markov chains (WMC),

including their features under marginalization see [116].
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Appendix B: Toy model

To illustrate the SFitter results and output we use a simple
toy model: we evaluate a potential (likelihood) V (m) over
a five-dimensional parameter space m. The potential has
five distinct maxima, a small and a large sphere, a cigar and
two cuboids, one of which is tilted. The background consists
of a constant termand a flat parabola centered at the origin:

Vsmall sphere =

75

[

1−

(
m1−650

100

)2

−

(
m2−250

100

)2

−

(
m3−350

100

)2

−

(
m4−350

100

)2

−

(
m5−350

100

)2
] 1
2

+

, (B.1)

Vlarge sphere =

12

[

1−

(
m1−350

300

)2

−

(
m2−650

300

)2

−

(
m3−650

300

)2

−

(
m4−650

300

)2

−

(
m5−650

300

)2
] 1
2

+

, (B.2)

Vtilted cuboid = 60

(

0.8+0.2

[

1−
|m1+2m2−1300|

250

]

+

)

×

(

0.8+0.2

[

1−
|2m1−m2−1475|

125

]

+

)

×

(

0.8+0.2

[

1−
|m3−650|

100

]

+

)

×

(

0.8+0.2

[

1−
|m4−650|

100

]

+

)

×

(

0.8+0.2

[

1−
|m5−650|

100

]

+

)

, (B.3)

Vcuboid = 25

(

0.8+0.2

[

1−
|m1−750|

50

]

+

)

×

(

0.8+0.2

[

1−
|m2−750|

50

]

+

)

×

(

0.8+0.2

[

1−
|m3−450|

150

]

+

)

×

(

0.8+0.2

[

1−
|m4−450|

150

]

+

)

×

(

0.8+0.2

[

1−
|m5−450|

150

]

+

)

, (B.4)

Vcigar =

6 exp

(

−
(m1+m2−500)

2

2×502

)

exp

(

−
(m1−m2)

2

2×1502

)

× exp

(

−
(m3−550)

2

2×1502

)

exp

(

−
(m4−550)

2

2×1502

)

× exp

(

−
(m5−550)

2

2×1502

)

, (B.5)

Vbackground =

0.1+4
( m1

1000

)2 ( m2

1000

)2 ( m3

1000

)2 ( m4

1000

)2 ( m5

1000

)2
.

(B.6)

The symbol [x]+ means Vobject = 0 for x < 0.
SFitter analyzes this parameter space using two ap-

proaches: first, we produce a set of Markov chains sampling
the entire parameter space as described in Appendix A
corresponding to p(m) ≡ V (m). This means we produce
a sample of 108 points, distributed equally over ten individ-
ual chains, which form a likelihood map of the parameter
spacem.
In a second step SFitter starts from the maxima in the

Markov chain for V (m) and searches for the local max-
ima with improved resolution. For the Bayesian probability
functions this step is strictly speaking not necessary, as
long as we are only interested in marginalized distribu-
tions. On the other hand, we always want to have a good
idea of what structure V (m) exhibits over the parameter
space and where its maxima are.
We eliminate local-maxima candidates if they are too

close in parameter space and produce the ranked list of the
largest values of V (m) in the five-dimensional parameter
space, shown in Fig. 11.We see that as an isolated point the
small sphere has the highest value of V (m).
Technically, because the resolution of the Markov chain

will in general be too coarse to match the data errors, we
need an additional hill-climbing algorithm.We use a modi-
fied version of Minuit [117]. For the gradient and diag-
onal second derivatives, we replace the simple three-point
formulae in the standard Minuit version with Ridders’
method [118]. This algorithm starts with the three-point
formulae using a large step size, then iteratively shrinks
the step size (typically by a factor of 2) and computes an
estimate using all points calculated so far. The result of
the three-point formula using only the new points is used
to estimate the calculation’s uncertainty. The iterations
terminate when the desired accuracy is reached or when
numerical uncertainties dominate for very small step sizes.
In this method, not only all odd-power terms in the Tay-
lor expansion of the derivative cancel, but also the leading
even-power terms, in turn improving the accuracy. In add-
ition, the step size is dynamically adjusted to its optimal
value.
A slight complication arises from our box-shaped the-

ory errors, because the function has a discontinuous sec-
ond derivative. The Minos error estimate is in principle
not affected by this, but this discontinuity breaks Ridders’
algorithm: the higher derivative can now vastly differ be-
tween two neighboring points, and the terms listed above
do not cancel any longer. To solve this problem, we re-
place the likelihood function by its original shape around
the discontinuity: suppose the parameter point for which
we want to compute the derivatives falls into the central
region of (1) where logL = 0. For the derivatives we al-
ways assume logL = 0, no matter if the parameter point
probed by Ridders’ algorithm falls inside or outside the flat
region. Similarly, in case the parameter point we are inter-
ested in is on the positive branch of the parabola, for the
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derivatives we just replace the flat region with the oppo-
site branch of the parabola. Note that this is only a tech-
nical trick to improve the estimate of the derivative and
that the calculated values of logL are not used anywhere
else.
To reduce the number of dimensions over which we

would like to compute a probability distribution we have
three options: first we can simply slice the parameter space
inm3,4,5, which is useful to illustrate the behavior of V (m)
but has no statistical meaning whatsoever. Second, we
can compute the profile likelihood described in Sect. 3.1,
just projecting out dimensions by replacing the reduced-
dimensional value of V by its maximum in the removed
dimensions. And finally, we can marginalize over the di-
mensions. Note that only marginalization will produce
a mathematically well-defined lower-dimensional probabil-
ity distribution. Technically, marginalization means noth-
ing but binning the pdf and collecting its values in a his-
togram for the two remaining dimensionsm1,2.

Fig. 11. SFitter output for the five-dimensional potential. First row : list of the largest values of V (m) in the entire parameter
space. Second row : logarithmic map of V (m1,m2), as a profile likelihood (left), or marginalized over m3,4,5 (right). Third row :
distribution for V (m1), as a profile likelihood (left) or marginalized over m2,3,4,5 (right)

In the second row of Fig. 11 we immediately see that
the small sphere appears more prominent in the profile-
likelihood version of V (m1,m2), while the large sphere
dominates the two-dimensional Bayesian distribution of
V (m1,m2). The same effect we see in the one-dimensional
distributionsV (m1), where in the profile likelihood case one
of the cuboids appears prominently, as expected from the
list of best values for V (m). If V were a pdf we could con-
clude that the small sphere contains the most likely param-
eter points, while the large sphere is the most likely physics
configuration. This dominance of the large sphere over the
most likely single point in the small sphere is an effect of the
marginalization, i.e. an example for a volume effect.
The question if suchvolume effects shouldbe considered,

if instead the best single point is preferable, or if actually the
third-best point should be picked out by a theory bias can-
not and shouldnot be answeredbySFitter as a tool. Instead,
SFitter provides all information needed by the user to cor-
rectly answer each of these different questions.
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